If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-40t+700=0
a = -16; b = -40; c = +700;
Δ = b2-4ac
Δ = -402-4·(-16)·700
Δ = 46400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{46400}=\sqrt{1600*29}=\sqrt{1600}*\sqrt{29}=40\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40\sqrt{29}}{2*-16}=\frac{40-40\sqrt{29}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40\sqrt{29}}{2*-16}=\frac{40+40\sqrt{29}}{-32} $
| 7x+14=4x+3 | | (110+4x)+(x+103)+(70)=243 | | 2(1+3x)+2x=-5(-6-8x)-4x | | 27+3x-1=5x12 | | 8.5x+14000-x*2.5=900 | | 1/2(14x+12)-12=-2/5(15x-25) | | 4.9x^2+13x-53=0 | | 8.5x+x-14000*2.5=900 | | x-0.6x=44 | | 82+51+x=180 | | (2x+21)+(3x+4)=90 | | 4.9x^2+13x+53=0 | | 7k-3=26 | | 9(x-4)=9x-3/ | | 30x=40.20 | | 2+2x=6x-6 | | 2(p-5)+4p=5(p-8)-5p | | -4w=-428 | | −30=5(x-1) | | -2(3n+6)=2(3n+6) | | 7/8=x/48 | | -6x+15=60-x | | 112x−112=18x+16−16x | | 4p+44=p | | 9m+18=-27 | | 6r+30=5(r+6) | | 10x-2-12x+6+3x=9 | | 5x+7+5x=2x-7 | | 4•x=48-2x | | 1/4r+1/7r=11 | | -4x-5+2x-1=10 | | -3(x+5)-41=7-39 |